
Journal of Computational Physics 228 (2009) 5574–5591
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Domain decomposition solution of nonlinear two-dimensional
parabolic problems by random trees

Juan A. Acebrón a,*, Ángel Rodrı́guez-Rozas a, Renato Spigler b

a Center for Mathematics and its Applications, Department of Mathematics, Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa, Portugal
b Dipartimento di Matematica, Università ‘‘Roma Tre”, Largo S.L. Murialdo 1, 00146 Rome, Italy

a r t i c l e i n f o
Article history:
Received 29 January 2009
Received in revised form 22 April 2009
Accepted 23 April 2009
Available online 6 May 2009

PACS:
65C05
65C30
65N55

Keywords:
Domain decomposition
Monte Carlo methods
Nonlinear parabolic problems
Random trees
Parallel computing
Fault tolerant algorithms
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.04.034

* Corresponding author.
E-mail addresses: juan.acebron@ist.utl.pt (J.A. Ac
a b s t r a c t

A domain decomposition method is developed for the numerical solution of nonlinear
parabolic partial differential equations in any space dimension, based on the probabilistic
representation of solutions as an average of suitable multiplicative functionals. Such a
direct probabilistic representation requires generating a number of random trees, whose
role is that of the realizations of stochastic processes used in the linear problems. First, only
few values of the sought solution inside the space-time domain are computed (by a Monte
Carlo method on the trees). An interpolation is then carried out, in order to approximate
interfacial values of the solution inside the domain. Thus, a fully decoupled set of sub-prob-
lems is obtained. The algorithm is suited to massively parallel implementation, enjoying
arbitrary scalability and fault tolerance properties. Pruning the trees is shown to increase
appreciably the efficiency of the algorithm. Numerical examples conducted in 2D, includ-
ing some for the KPP equation, are given.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Probabilistic methods, based on Monte Carlo simulations, are not used very frequently in low dimension, because of their
poor performance. They could be used, however, to obtain the solution to boundary value problems for certain partial dif-
ferential equations (PDEs) at few points internal to the domain. This is possible, in contrast with other more traditional
(deterministic) methods, which require solving globally the PDE problem on the entire domain. They can also be used in case
the domain is complex, and/or in high dimensions.

In [1,2], linear two-dimensional boundary value problems for elliptic PDEs, were solved exploiting the probabilistic rep-
resentation of solutions. This approach was coupled to a domain decomposition (DD) strategy [15,29], consisting of first
obtaining only very few values of the solution, at some points internal to the domain, and then interpolating on such points,
thus obtaining continuous approximations of the sought solution on suitable interfaces. At that stage, full decoupling in arbi-
trarily many subdomains is possible, since interfacial values can be used as boundary values on the boundaries of the various
subdomains. This fact represents a definitely more advantageous circumstance, compared to what happens in any other
existing deterministic domain decomposition methods. We called our method ‘‘probabilistic domain decomposition meth-
od” (PDD method, for short).
. All rights reserved.

ebrón), angel.rodriguez@ist.utl.pt (Á. Rodrı́guez-Rozas), spigler@mat.uniroma3.it (R. Spigler).

mailto:juan.acebron@ist.utl.pt
mailto:angel.rodriguez@ist.utl.pt
mailto:spigler@mat.uniroma3.it
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5575
In [5], we extended such method to treat nonlinear parabolic one-dimensional problems. In this paper, we generalize
these results to deal with arbitrary space dimensions. For linear parabolic problems, a probabilistic representation is known
to exist (the Feynman–Kac formula), as it happens for linear elliptic problems. Probabilistic representations for the solution
to certain nonlinear PDE problems, generally speaking, are less known. A key feature of some of such representations is that
they require generating suitable ‘‘random trees”, whose ‘‘realizations” (or ‘‘paths”) can be thought of as the generalization of
the paths of stochastic processes on which averages are computed in the linear cases.

We should recall here the seminal work by McKean [27], where a probabilistic representation was derived for the solution
to the nonlinear parabolic equation known as the Kolmogorov–Petrovskii–Piskunov equation (KPP, for short). Other impor-
tant achievements concerning probabilistic representations of solutions to nonlinear PDEs appeared in [25] for the Fourier
transformed Navier–Stokes equations. Subsequent theoretical advances have been accomplished recently, aiming to gener-
alize the results of [25] to other nonlinear PDEs of interest to Physics and Engineering [36]. In [18,34], a theoretical inves-
tigation on kinetic equations of the Vlasov-Poisson type has been accomplished and preliminary numerical simulations
conducted, showing the computational feasibility of this approach.

It is worth pointing out that in more general problems, the probabilistic description in terms of random trees may be no
longer valid, and it is necessary to resort to more complex stochastic processes. Indeed, a probabilistic representation of the
solution to the Navier–Stokes equations in R3 has been derived by means of tree-indexed random trees [28].

Finally, in [30], a linear one-dimensional diffusion equation as well as the one-dimensional viscous Burger’s equation
have been solved numerically by means of convenient random walks and branching random walks, respectively. The results
were then improved by a Picard iteration scheme.

While all of this can be exploited to obtain the solution at some points, internal to the space-time domain, we emphasize
the possibility of using parallel computers in a very efficient way. This can be done, as in [1,2], i.e., using the few computed
values only as nodes on which one can interpolate, thus obtaining approximations for the interfacial values, and then fully
decoupling into independent sub-problems. As an aside, the method is capable of exploiting massively parallel architectures.
Indeed, not only the Monte Carlo approach can be trivially but effectively parallelized, but also the so-obtained decomposi-
tion in subdomains can exploit parallel architectures. Moreover, the intermediate step of interpolation can also be carried
out independently on each interface. Hence, there are three sources of parallelism, so to say, though these three stages
are separated sequentially. Ultimately, parallel codes with extremely low communication overhead among processors can
be developed. In closing we stress that this method is characterized by some of the most desirable properties for effectively
exploiting high-performance supercomputers [4], equipped with hundreds of thousands or millions of processors, such as
arbitrary scalability and fault tolerance [3,19].

The three sources of parallelization are: (1) the Monte Carlo generation of internal node functional values (even each sin-
gle tree can be runned on an independent processor), (2) the interpolation part (the interpolation on each interface can be
accomplished independently), and (3) the domain decomposition solution (that can be assigned to independent local solver,
using as many processors). Moreover, each of such three stages enjoys a natural fault tolerant property: (1) if a few proces-
sors fail in the Monte Carlo simulations, it will be enough to ignore the results from them. Hence, at a price of a small addi-
tional errors, the algorithm will still provide meaningful results. (2) Failure of processors computing interpolating values of
the solution on some interfaces may only imply to neglect, temporarily, the solution on those subdomains having such inter-
faces as part of their boundary. (3) Failure of processors responsible for the numerical solution on some subdomains, finally,
can also be temporarily neglected, while the solution computed by the local solvers on the remaining subdomains will be
computed correctly. Note that on the interfaces and on the subdomains where the processors failed, the solution can be com-
puted running again the algorithm.

Here is the plan of the paper. In Section 2, some general mathematical preliminaries are recalled, while in Section 3 the
algorithm is described. The complexity inherent to the probabilistic part of the algorithm as well as various sources of
numerical errors are discussed there. In Section 4, a strategy to improve the computational complexity of the algorithm
by pruning the random trees is investigated. Numerical examples for nonlinear two-dimensional PDEs, among which the
KPP equation, are given in Section 5. The performance of the PDD method is also assessed comparing our results with those
obtained by competitive parallel numerical codes, broadly used in the high-performance scientific community. In a short
section at the end, the high points of the paper are summarized.

2. Mathematical preliminaries

A variety of phenomena pertaining to Engineering, Physics, and other Sciences, are governed by diffusion equations. The
relations between macroscopic diffusion and the mean statistical effect of the microscopic random (Brownian) motion of
molecules goes back, among the others, to Einstein and Smoluchowski. A connection between ‘‘stochastic differential equa-
tions”, that can be thought as ordinary differential equations driven by a certain kind of random noise (Langevin equations),
and partial differential equations, was established. Inspired by Feynman’s ‘‘path integrals” in quantum physics, Kac realized
that a similar formulation could be applied to obtain a representation of the solution to the heat equation and to other dif-
fusive (parabolic) linear partial differential equations. This lead to the so-called Feynman–Kac formula. Let uðx; tÞ be a
bounded function satisfying the Cauchy problem for the linear parabolic partial differential equation,

5576 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
@u
@t
¼ Lu� cðx; tÞu; uðx; 0Þ ¼ f ðxÞ; ð1Þ
where x 2 Rn; L is a linear elliptic operator, say L :¼ aijðx; tÞ@i@j þ biðx; tÞ@ i (using the summation convention), with continu-
ous bounded coefficients, cðx; tÞP 0 continuous bounded, continuous initial condition, f ðxÞ. The probabilistic representation
of the solution u to Eq. (1) is given through the Feynman–Kac formula
uðx; tÞ ¼ E f ðbðtÞÞe�
R t

0
cðbðsÞ;t�sÞds

� �
; ð2Þ
see [17,23], e.g. where bð�Þ is the n-dimensional stochastic process starting at ðx;0Þ, associated to the operator L, and the ex-
pected values are taken with respect to the corresponding measure. When L is the n-dimensional Laplace operator, bð�Þ re-
duces to the standard n-dimensional Brownian motion, and the measure reduces to the Gaussian measure. In general, the
stochastic process bð�Þ is the solution of a system of stochastic differential equations (SDEs) of the Ito type, related to the
elliptic operator in (1),
db ¼ bðx; tÞdt þ rðx; tÞdWðtÞ: ð3Þ
Here WðtÞ represents the n-dimensional standard Brownian motion (or Wiener process); see [23,10], e.g. for generalities, and
[24] for related numerical treatments. As is known, the solution to (3) is a n-dimensional stochastic process, bðt;xÞ, where x,
usually not indicated explicitly in probability theory, denotes the ‘‘chance variable”, which ranges on an underlying abstract
probability space. The drift vector, b, and the diffusion matrix, r, in (3), are related to the coefficients of the elliptic operator
in (1) by b ¼ ðb1; . . . ; bnÞT , and rrT ¼ a, with r ¼ frijgi;j¼1;...;n; a ¼ faijgi;j¼1;...;n.

The representation in Eq. (2) can be generalized to deal with problems on bounded domains, say X � Rn, where given
boundary data uðx; tÞjx2@X ¼ gðx; tÞ of the Dirichlet type are prescribed. Thus, the following representation holds, for the solu-
tion of the problem, being now continuous and bounded on X� ½0; T�,
uðx; tÞ ¼ E f ðbðtÞÞe�
R t

0
cðbðsÞ;t�sÞds1½s@X>t�

� �
þ E gðbðs@XÞ; t � s@XÞe�

R s@X
0

cðbðsÞ;t�sÞds1½s@X<t�

� �
: ð4Þ
Here s@X denotes the first exit (or hitting) time of the path bð�Þ, started at ðx; tÞ, when @X is crossed, and 1½s>t� is the charac-
teristic function, which takes the value 1 or 0, depending whether s@X is or is not greater than t.

The solution to the linear inhomogeneous problem
@u
@t
¼ Lu� cðx; tÞuþ Fðx; tÞ; ð5Þ
where Fðx; tÞ is a bounded continuous function of x and t, can also be represented probabilistically, using the related Green
function, which, in turn, can be represented as above, being the solution to the associated homogeneous problem, see [5], e.g.

A probabilistic representation does exist also for nonlinear parabolic equations. In [27], McKean derived the
representation
uðx; tÞ ¼ E
YkðxÞ
i¼1

f ðxiðt;xÞÞ
" #

; ð6Þ
for the one-dimensional KPP equation
ut ¼ uxx þ uðu� 1Þ; �1 < x < þ1; t > 0 ð7Þ
subject to the initial value uðx;0Þ ¼ f ðxÞ, for �1 < x < þ1; see also [17]. Here kðxÞ is the random number of branches, and
xiðt;xÞ is the position of the ith stochastic process surviving at time t. A similar representation, however, can be derived for
more general nonlinear as well as higher-dimensional parabolic equation problems, such as
@u
@t
¼ Lu� cuþ

Xm

i¼2

aiui; ð8Þ
where m P 2 is an integer, ai P 0;
Pm

i¼2ai ¼ 1, and c is a positive constant. Note that the PDEs in (8) include, in particular, KPP
equations in any dimensions. With respect to the latter, we can handle also nonlinear PDEs with variable coefficients and
drift terms. A representation like that in (6) is based on the generation of branching diffusion processes associated to the
elliptic operator in Eq. (1) and governed by an exponential random time, S, with probability density pðSÞ ¼ c expð�cSÞ.

In [5], the representation obtained by McKean in [27] was illustrated considering the one-dimensional equation
ut ¼ Lu� cuþ u2, with uðx;0Þ ¼ f ðxÞ prescribed, in the form
uðx; tÞ ¼ E½f ðbðtÞÞ1½S0>t�� þ
1
c

E½f ðbðt � S0ÞÞ1½S1>t�S0 �f ðbðt � S0ÞÞ1½S2>t�S0 �1½S0<t�

þ 1
c2 E½f ðbðt � S0ÞÞ1½S1>t�S0 �f ðbðt � S0 � S2ÞÞ1½S3>t�S0�S2 �f ðbðt � S0 � S2ÞÞ1½S4>t�S0�S2 �1½S2<t�S0 �1½S0<t� þ � � � ; ð9Þ

Fig. 1. A picture illustrating a typical branching process in 2D. The random tree starts at ðx; y; 0Þ, and evolves in time inside the domain X. After some
random exponential time, less than the final time, t, the path splits into two independent paths: one of them reaches the final time, t, while the other one
touches upon the boundary, s@X being the first exit time out of the domain X. Both of them do not suffer any further splitting.

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5577
where S0; S1; S2; . . . ; Si; . . . are independently generated random times, picked up from the exponential probability density
pðSÞ ¼ c expð�cSÞ. Note that in Eq. (9) each term contributes partially to the full solution.

A picture of such method, using branching stochastic processes, can be given as follows: a sufficiently high number of
random exponentially distributed times, Si, is first generated, so that their sum is less than or equal to the final time, t.
For every random time, the given stochastic process solution of (3) is split into as many branches as those corresponding
to the power of the nonlinearity. They start from the point where the previous stochastic process was at time Si, and continue
along independent paths until the next occurrence, Siþ1, takes place. Whenever one of these possible branches reaches the
final time, t, the initial value, f, is evaluated at the position where the stochastic process was located. The solution is finally
reconstructed multiplying all contributions coming from each branch. For the purpose of illustration, in Fig. 1 a 2D picture is
shown, correspondingly to only two branches. Note that every branching process can be seen as a random tree with the
space point x as its root. Therefore, in the probabilistic representation of solutions to nonlinear PDEs, a random tree plays
a similar role as a single random path does in the linear case.

In case of a boundary value problem, with the boundary data uðx; tÞjx2@X ¼ gðx; tÞ, a similar representation holds, i.e.,
Fig. 2.
on the
uðx; tÞ ¼ E
YkðxÞ
i¼1

f ðxiðt;xÞÞ1½t<s@Xi
� þ gðbiðs@Xi

Þ; t � s@Xi
Þ1½t>s@Xi

�

n o" #
; ð10Þ
where s@Xi
is again the first exit time of the stochastic process bið�Þ.

3. The numerical method

The algorithm consists of three steps. To illustrate how it works, in Fig. 2 a sketch was plotted where such steps are shown
for a two-dimensional problem. The first step is computing the solution at a few points by a probabilistic Monte Carlo-type
method based on averaging over certain random trees, see Eq. (6). This is done on some chosen (either physical or artificial)
‘‘interfaces”, located inside the space-time domain D :¼ X� ½0; T�, where X � Rn. In the following, such interfaces are ob-
tained, for simplicity, partitioning the domain into subdomains like Di :¼ ½xi�1; xi� �X0 � ½0; T�, being X0 � Rn�1. For instance,
in R2 this corresponds to divide the domain in slices where the interfaces are parallel to y-axis. Once the solution has been
computed, the second step is interpolating on such points, considered as interpolation nodes, thus obtaining continuous
approximations of interfacial values of the solution. The third step, finally, consists in computing the solution inside each
subdomain, which task can be assigned to separate processors. This can be realized resorting to local solvers, which may
use classical numerical methods, such as finite differences or finite elements methods.
A sketch illustrating the main steps of the algorithm in 2D: The figure on the left shows how the domain decomposition is done in practice. The figure
right shows the points where the solution is computed probabilistically; these are used afterwards as nodal points for interpolation.

5578 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
3.1. Probabilistic part

The purpose of this step is to compute the sought solution at a few single points, inside the space-time domain. Comput-
ing the solution at a high number of points so to cover a full computational domain is also possible but is exceedingly expen-
sive, even though this approach could be pursued when the number of the available processors is extremely high. This can be
done assigning the task of computing the solution at a set of points to different processors. The Monte Carlo method, in fact,
is capable of fully exploit massively parallel architectures, and more, it is scalable to an arbitrary number of processors and is
naturally fault tolerant.

When the parabolic equations are linear, a given number of random paths have to be generated, which obey the stochas-
tic differential equation in (3), and track them until they either touch the boundary for the first time or reach a prescribed
final time, t. The former case occurs in initial-boundary value problems (e.g. with Dirichlet and/or Neumann boundary con-
ditions), while the latter case occurs in both a purely initial value problem, and a initial-boundary value problems. The solu-
tion to the equation at a given point, ðx; tÞ, can then be obtained by means of the Feymann-Kac formula in (4) or (2). In
practice, the expected value is replaced by an arithmetic mean, since we must deal with a finite sample size, N. An alternative
strategy to evaluate the solution was proposed in [30] for initial-boundary problems, which requires generating a random
exponential time, S, obeying the probability density PðSÞ ¼ c expð�cSÞ for every random path. Then, depending on whether
S < t or not, the given path bðtÞ, contributes or not to the solution. Therefore, solution is computed as
uðx; tÞ ¼ E½f ðbðtÞÞ�: ð11Þ
In practice, the expected value above must be replaced necessarily by a finite sum, and moreover the stochastic paths are
actually simulated resorting to suitable numerical schemes. Thus, approximately,
uðx; tÞ ¼ 1
N

XN

j¼1

f b�j ðtÞ
� �

; ð12Þ
where N is the sample size, and b� is the stochastic path with discretized time. Such a discretization procedure unavoidably
introduces two sources of numerical error. The first one is the pure Monte Carlo statistical error, which it is known to be of
order O 1=

ffiffiffiffi
N
p� �

when N goes to infinity. The second error is due to the fact that the ideal stochastic path, bjð�Þ, has to be
approximated, discretizing time, by some numerical scheme yielding the paths b�j ð�Þ. The truncation error made in solving
numerically the stochastic differential equation (3), obviously depends on the specific scheme chosen, see [24], e.g. Among
these are the Euler scheme, which was used here to simulate numerically Eq. (3). Such scheme is well known to have a trun-
cation error of order OðDtaÞ, where a ¼ 1=2 or a ¼ 1 depending on whether the scheme being of the ‘‘strong” or ‘‘weak” type,
respectively [24].

For the case of a boundary value problems, a new source of numerical error should be taken into account. In fact, consider,
for the purpose of illustration, the Dirichlet problem for the one-dimensional heat equation, in presence of a constant sink
term, c > 0,
@u
@t
¼ @

2u
@x2 � cu; a < x < b; t > 0;

uða; tÞ ¼ 0; uðb; tÞ ¼ 0;
uðx;0Þ ¼ f ðxÞ:

ð13Þ
The solution can be computed as
uðx; tÞ ¼ 1
N

XN

j¼1

f ðb�j ðtÞÞ1½Sj>sX �: ð14Þ
In Fig. 3, we sketched the three possible scenarios the random paths b�j ðtÞ can undergo. Note that for the random paths of the
type labelled with (3) in Fig. 3, it is required to evaluate precisely the first exit time out of the boundary. Such a task is how-
ever by far nontrivial, since s@X, in general, will be estimated numerically, and hence will be affected by numerical errors.
Indeed, numerical experiments show that the error in estimating it may dominate over the other sources of numerical errors,
and is therefore of paramount importance to assess accurately such a quantity.

In practice, the probability that a given approximate path exits the boundary between two consecutive time steps, is non-
zero, and then it is possible that the true exit time might be overlooked. This circumstance has been pointed out in several
occasions, see, e.g. [32,11,14].

In [20], it was estimated that the error made in evaluating (11) is of order OðDt1=2Þ, being Dt the time step used in solving
numerically the stochastic differential equation (3) by means of the Euler scheme. To reduce such an error it becomes crucial
to evaluate accurately the first exit time, adopting suitable numerical strategies. Among the various possibilities considered
in the literature, we chose to implement that proposed in [26] for one-dimensional problems, which is based on a theoretical
approximation of the exit probability. To solve two-dimensional problems on the square, as we did in this paper, the value of
the exit probability on X has been taken as the maximum among the four hitting probabilities that a trajectory first exits the

Fig. 3. The three possible patterns a random path may follow for the one-dimensional problem in (13). In (1), the generated exponential random time turns
out to be greater than the final time, T; in (2), instead, the random time is smaller than T; in (3), the first exit time s@X is smaller than both, the random and
the final time.

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5579
four possible boundary-sides. This consists of an approximation of the true two-dimensional exit probability, but it suffices
in order to achieve a numerical error now well below the statistical error.

3.1.1. Computational complexity for the nonlinear problem
In [5], the computational time required by the probabilistic part of the algorithm, when solving an initial value problem

for a nonlinear one-dimensional PDE, has been estimated. More precisely, it was assumed that N random trees, initially lo-
cated at ðx;0Þ, were generated and followed until they reached a prescribed final time, t. The same can be done for higher-
dimensional PDEs when the solution at a single point, say ðx; tÞ, can be evaluated generating N random trees, starting at ðx;0Þ,
until they reach a prescribed final time. As in the one-dimensional case, the random tree associated to the nonlinear term um

requires creating m branches every time a ‘‘splitting event” occurs, and this according to an exponential distribution. The
latter is due to and governed by the linear term, �cu.

The computational time can be measured in terms of the number of iterations in time required to fully generate a random
tree with k branches surviving at the final time, t. Note that for a boundary value problem, the computational time is smaller,
because there are some trees whose branches may hit the boundary, and hence are stopped before reaching the prescribed
final time. Then, the estimated computational time for a purely initial value problem can be used as an upper bound for the
corresponding boundary value problem.

If tc is the time spent per iteration, such computational time can be estimated as ktct=Dts. Here Dts is the average value of
the time step, and was shown in [5] (in the one-dimensional case) to be
Dts ¼
1� e�cDt

c
; ð15Þ
where Dt denotes the time step chosen to solve numerically the associated stochastic differential equation in (3). In case of N
random trees, the average computational time, tb (b standing for ‘‘branching”), turns out to be
tb ¼ N
X1
k¼1

ktc
t

Dts
PðkÞ; ð16Þ
where PðkÞ is the probability of finding a random tree with k branches. Such a probability was evaluated in [5] by first enu-
merating and then summing up the various probabilities of having k branches in the final configuration, and was given by
PðkÞ ¼ ðk�mþ 1Þ!ðm�1Þ 1

Ne!ðm� 1ÞNe
e�cT ½1� e�cðm�1ÞT �Ne ; ð17Þ
where Ne ¼ ðk� 1Þ=ðm� 1Þ, and the symbol r!ðsÞ denotes the ‘‘multifactorial”, or sth factorial, defined recursively as r!ðsÞ ¼ 1 if
0 6 r < s; rðr � sÞ!ðsÞ if n P s.

When m ¼ 2 or 3, estimates tb of practical use, asymptotically valid as T ! þ1, were obtained,
tb 6 Ntc
T

Dts
ecT ; when m ¼ 2;

tb 6 Ntc
T

Dts
e2cT ; when m ¼ 3: ð18Þ

5580 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
In the general case of m 2 N;m > 3, it was obtained, approximately,
Fig. 4.
single p

Fig. 5.
estimat
cubic n
c ¼ 1;D
tb ¼ O Ntc
t

Dts
exp

3m� 5
2

ct
� �	

: ð19Þ
All this was obtained in [5] for the one-dimensional case, and can be trivially generalized to the n-dimensional case. In fact,
the computational time depends on the total number of stochastic differential equations in (3), which increases linearly with
the number of space dimensions.

As it was mentioned before for the linear case, in order to evaluate (6) we resort to numerical simulations of the Monte
Carlo type, considering a finite size sample, N. In practice, we replace the expected value with an arithmetic mean, which is
known to provide the best unbiased estimator to it [22]. The error made in doing so is statistical in nature and of the order of
N�1=2. However, it turns out that when we evaluate numerically functionals of a branching process, the fluctuations around
the mean are often non-Gaussian (see [18,35], e.g.). For this reason, a large deviation analysis was conducted to assess the
reliability of our numerical results. This has been done following the numerical strategy put forth in [31] to analyze simu-
lated data. The deviation function estimated from the data obtained solving Example B of Section 5 at the single point
x ¼ ð0;0:5Þ and t ¼ 0:5, is depicted in Fig. 4. In the inset the global behavior of the ‘‘deviation function” is shown for a full
range of values, while in the larger figure the plot is expanded around the mean value. Recall that, from the theory of large
deviations the probability distribution is known to decay exponentially fast as P � expð�NIðxÞÞ, for values both larger or
smaller than the empirical mean, IðxÞ being the deviation function and N the sample size. Here � means logarithmic
equivalence [31]. The sample size required to attain a given statistical error can be estimated computing the inverse of
0.635 0.64 0.645 0.65 0.655

x

0

0.0001

0.0002

0.0003

0.0004

0.0005

I(
x)

0 0.25 0.5 0.75 1
x

0

0.25

0.5

0.75

1

I(
x)

The behavior of the deviation function for a sample size N ¼ 106, obtained analyzing the simulated data when solving numerically Example B at the
oint x ¼ ð0;0:5Þ, and t ¼ 0:5.

0 1 2 3 4 5 6
t

2

4

6

8

10
Numerical (2D)
Numerical (1D)
Analytical (y=1.03x+2.71)
Analytical (y=1.04x+2.01)

(a)

0 1 2 3 4
t

2

4

6

8

10

12

lo
g

T P
ro

b(
t)

lo
g

T P
ro

b(
t)

Numerical (2D)
Numerical (1D)

Analytical (y=2.05x+2.26)
Analytical (y=2.09x+1.44)

(b)

Comparison between the computational time spent in solving an initial value problem for the nonlinear PDE in (8) at a single point (x = 0), and the
ed computational time obtained theoretically from Eq. (18). This has been done in (a), for a purely quadratic nonlinearity, and in (b), for a purely
onlinearity. In both cases the comparison has been done for one and two-dimensional problems. Other parameters used are N ¼ 106, and
t ¼ 10�2.

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5581
the deviation function evaluated at the point where the deviation function departs from its minimum value, that is the
expected mean value. For the present case, to obtain the mean value with a statistical error of order 10�3 with high proba-
bility, N should be higher than 104. In fact, with N ¼ 105, the probability of obtaining a value larger than the empirical mean
plus the statistical error is already P 	 10�3. Therefore, choosing a sample size of order 106 in our numerical examples suf-
fices to guarantee a reliable approximation. Moreover, in some cases we were able to check the actual numerical error by a
direct comparison with the analytical solution, confirming that this size indeed suffices in all our test problems.

In Fig. 5, a comparison between the analytical results obtained in (18) and the measured computational time is shown as
function of the final time, t in logarithmic scale (for the y-axis). Here the computational time, spent in solving probabilisti-
cally the corresponding initial value problem for the nonlinear PDE in (8), at a single point x ¼ 0, has been measured. Fig. 5(a)
shows the results corresponding to the case with only a2 different from zero in Eq. (8), and Fig. 5(b) those corresponding to
a3, that is a purely quadratic and cubic nonlinearity, respectively. The initial condition was chosen to be
f ðxÞ ¼ expð�x2=4rÞ=

ffiffiffiffiffiffiffiffiffiffi
4pr
p

, with r ¼ 1. In all simulations below, the value of r was chosen in such a way that
maxx2Rn f ðxÞ < 1. This is to guarantee convergence of the expansion (9). Note that the computational time spent by the prob-
abilistic part of the algorithm for the two-dimensional problem is almost twice the time spent for solving the one-dimen-
sional problem. This is in agreement with the theoretical considerations above, and confirms that, in general, increasing
the dimensionality of the problem merely affects the computational time, in that the number of stochastic differential equa-
tion (3) to be solved increase correspondingly.

3.2. Interpolation in space-time

Let assume that we have already computed the values of the sought solution at some points on the interfaces x ¼ xi, by
the previous Monte Carlo approach. These are the points ðxi; yj; tkÞ, where yj 2 X0, for every fixed i, and very few j’s and k’s. A
number of numerical schemes can be adopted to interpolate in the n� 1 dimensional space X0. The simplest method of
obtaining multivariate interpolation is to consider a univariate method and derive from it a multivariate method by tensor
product. In practice, given n� 1 set of points, the tensor product interpolation finds the corresponding interpolation coeffi-
cients solving repeatedly univariate interpolation problems as described in [16]. For the two-dimensional examples in Sec-
tion 5, a tensor product interpolation based on cubic splines was adopted [6]. Here the nodal points are uniformly distributed
on X0, and a not-a-knot condition has been imposed, which means imposing continuity of the third derivative at the bound-
ary. When the number of nodal points, n, is the same along each dimension, interpolating at a single point ðyj; tkÞ requires
nþ 1 spline calculations to obtain the spline coefficients, and then evaluating the spline value at nþ 1 points. The compu-
tational cost for calculating the spline coefficients is known to be of order OðnÞ, while for evaluating the spline value it is
Oðlog nÞ. The interpolation error when the interpolating function is sufficiently smooth (C8 at least) is of order of
Oðh4 þ l4Þ [33], where h and l are the widths of the interpolating grid in the y and t axes, respectively.

In Fig. 6, the pointwise numerical error made when interpolating at the interface ð0; y; tÞ has been shown. The nodal
points were obtained solving probabilistically the two-dimensional KPP equation on the square domain X ¼ ½�1;1��
½�1;1�, with the initial condition uðx; y;0Þ ¼ 1þ ðexpðx� yÞÞ=2

ffiffiffi
3
ph i�2

, and boundary conditions
y

t

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

1

2

3

4

5

6

7

8

9
x 10−5

Fig. 6. Contour plot showing the pointwise numerical error obtained when interpolating at the interface ð0; y; tÞ using 8 nodal points along y, and t. Such
points are obtained solving probabilistically a Dirichlet boundary value problem for the KPP equation in 2D. The parameters used are as in Fig. 5.

5582 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
uðx; y; tÞj@X ¼ 1þ e
x�yffiffi

2
p � 5ffiffi

6
p tffiffi

6
p

 !�2
������
@X

: ð20Þ
The error can be evaluated precisely since for this problem an analytical solution is known, i.e.,
uðx; y; tÞ ¼ 1þ e
x�yffiffi

2
p � 5ffiffi

6
p tffiffi

6
p

 !�2

: ð21Þ
Note that the numerical error due to interpolation lie already below that affecting the nodal points (marked on the Figure),
which have been computed probabilistically, and subject to the numerical error described in the previous section.

3.3. Local solver

Once that continuous interfacial approximations of the solution have been obtained upon interpolation on the previously
computed nodes (by Monte Carlo), we can solve the original problem on each subdomain, Di, independently of each other,
since a full decoupling has been realized. Hence, the numerical treatment on each subdomain can be accomplished by a local
solver, which can also be different from all the others. In the numerical examples below, we used a solver based on the LU
factorization.

4. Reducing the computational complexity of the probabilistic part by pruning the trees

The high computational cost of the probabilistic part of the algorithm is clearly displayed by the estimates in (18), char-
acterized by terms growing exponentially in time. Indeed, this is a serious problem especially when the final time, t, is large,
and no boundary conditions are prescribed. Clearly, the reason is that generating branching processes with a large number of
branches implies a strong computational effort. However, in the following we show that such an effort can be contained,
mainly because the contribution of the branching processes to the global solution becomes negligible quite soon, i.e., in gen-
eral, after only a low number of splitting events. For such a reason, a suitable ‘‘pruning” of the trees can be accomplished,
increasing dramatically in such a way the performance of the overall algorithm. In the following we show in practice
how this works.

Eq. (9) shows that the solution uðx; tÞ can be obtained by summing up the partial contributions in the configuration dia-
grams, consisting of random trees with an arbitrary number of branches, say k. Therefore, Eq. (6) can be rewritten as
uðx; tÞ ¼
X1
k¼1

1
ck�1 uðkÞðx; tÞ; ð22Þ
where uðkÞðx; tÞ ¼ E
Qk

i¼1f ðxiÞ
h i

, see Eq. (9). It can be proved that
uðkÞðx; tÞ 6 PðkÞ max
x2Rn

f ðxÞ
� �k

: ð23Þ
The proof for arbitrary values of m in Eq. (8) is rather cumbersome. Here, we consider only the case with a purely quadratic
nonlinearity, for the purpose of illustration. From Eq. (9) follows
uð2Þðx; tÞ ¼
Z t

0
dS0ce�cS0

Z þ1

�1
dx0pðx; S0; x0;0Þ � e�cðt�S0Þ

Z þ1

�1
dy1f ðy1Þpðx0; t � S0; y1;0Þ

	
2

: ð24Þ
Here p is the Green’s function, satisfying
@p
@t
¼ Lp; x 2 X; t > s; ð25Þ

pðx;0; y; sÞ ¼ dðx� yÞdðsÞ; ð26Þ
where L is the linear elliptic operator in (1). Changing S0 into S00 :¼ t � S0, we obtain
uð2Þðx; tÞ ¼ e�ct
Z t

0
dS00ce�cS00

Z þ1

�1
dx0pðx; t � S00; x0;0Þn2 x0; S

0
0

�

; ð27Þ
where nðx0; S
0
0Þ is given by
n x0; S
0
0

�

¼
Z þ1

�1
dy1f ðy1Þpðx0; S00; y1; 0Þ: ð28Þ
Note that n satisfies the Cauchy problem for the linear parabolic partial differential equation (1) with c ¼ 0 and initial con-
dition nðx0;0Þ ¼ f ðx0Þ. Therefore n x0; S

0
0

�

6 maxx02Rn f ðx0Þ, and hence

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5583
uð2Þðx; tÞ 6 e�ctð1� e�ctÞg2; ð29Þ
where g ¼maxx2Rn f ðxÞ. Recall that, from Eq. (17), the probability of branching with k ¼ 2 is precisely Pð2Þ ¼ e�ctð1� e�ctÞ,
and hence
uð2Þðx; tÞ 6 Pð2Þg2: ð30Þ
Let now describe the steps needed to evaluate the contribution to the global solution of random trees with k ¼ 3 branches.
Obtaining a configuration diagram with three branches requires generating five exponential random times, Si, with
i ¼ 1; . . . ;4, such that
S0 < t; S1 > t � S0; t � S0 > S2 > S0;

S3 > t � S0 � S2; S4 > t � S0 � S2: ð31Þ
It was shown in [5] that there are two configuration diagrams satisfying the conditions above, and both of them contribute
equally to the global solution. In the following, we focus on one of them, the overall partial contribution being then multi-
plied by two. From Eq. (9), we have
uð3Þðx; tÞ ¼ 2
Z t

0
dS0ce�cS0

Z þ1

�1
dx0pðx; S0;x0; 0Þ e�cðt�S0Þ

Z þ1

�1
dy1f ðy1Þpðx0; t � S0; y1;0Þ

�
Z t�S0

0
dS2ce�cS2

Z þ1

�1
dx1pðx1; S2;x0; 0Þ e�cðt�S0�S2Þ

Z þ1

�1
dy2f ðy2Þpðx1; t � S0 � S2; y2Þ

	
2

; ð32Þ
Changing the variables S0 and S2 into S00 ¼ t � S0 and S02 ¼ t � S0 � S2, respectively, we get
uð3Þðx; tÞ ¼ 2e�ct
Z t

0
dS00ce�cS00

Z þ1

�1
dx0pðx; t � S00; x0;0Þn x0; S

0
0

�
 Z S00

0
dS02ce�cS02

Z þ1

�1
dx1pðx0; S

0
0 � S02;x1; 0Þn2 x1; S

0
2

�

:

ð33Þ
Using Eq. (27), such equation can be rewritten in terms of uð2Þ as
uð3Þðx; tÞ ¼ 2e�ct
Z t

0
dS00c

Z þ1

�1
dx0p x; t � S00; x0;0

�

n x0; S

0
0

�

uð2Þ x0; S

0
0

�

: ð34Þ
As in the case of two branches, we have n x1; S
0
2

�

6 maxx12Rn f ðx1Þ. It then follows from Eq. (30) that
uð3Þðx; tÞ 6 2g3e�ct
Z t

0
dS00ce�cS00ð1� e�cS00 Þ ¼ e�ctð1� e�ctÞ2g3: ð35Þ
Since the probability of finding three branches is Pð3Þ ¼ e�ctð1� e�ctÞ2, we can conclude that uð3Þ 6 Pð3Þg3. By simply repeat-
ing this procedure, used to obtain uð3Þ in terms of uð2Þ, a general expression can be readily derived for the partial contribution
of kþ 1 branches, uðkþ1Þ, as a function of uðkÞ, and the result is
uðkþ1Þ ¼ ke�ct
Z t

0
dS00

Z þ1

�1
dx0pðx; t � S00;x0;0Þn x0; S

0
0

�

uðkÞ x0; S

0
0

�

: ð36Þ
The general estimate in (23) now follows induction. In fact, assuming that uðkÞ 6 PðkÞgk, we derive from Eq. (36)
uðkþ1Þ
6 kgkþ1e�ct

Z t

0
dS00ce�cS00 1� e�cS00

� �k�1
¼ gkþ1e�ctð1� e�ctÞk: ð37Þ
Therefore, uðkþ1Þ
6 gkþ1Pðkþ 1Þ, as it had to be proved.

In Fig. 7, the partial contributions, uðkÞð0; tÞ, obtained solving numerically the KPP equation in 1D and 2D at a single point
(x = 0), by means of random trees, are shown. This has been done for two different values of the final time, t. Moreover, the
results of the numerical simulations are compared with the theoretical estimates of the partial contributions as given in (23).
Note that the results of the numerical simulations lie always below the theoretical values, which fact proves that the esti-
mates actually are overestimates as expected.

It is remarkable that the partial contributions to the global solution decay very rapidly as the number of branches in-
creases. Therefore, we expect that truncating the expansion in (22) to only a certain number of branches, might not affect
appreciably the result. Such truncation can be seen as ‘‘a pruning” of the full random tree, which amounts to keep only
few trees possessing a certain number of branches. Such a procedure has been used in literature before, but mainly to expand
the set of initial-conditions for which a probabilistic representation can be found (see [13], e.g.). Performing such a pruning,
the additional truncation error
e :¼
X1

k¼kmaxþ1

uðkÞ ð38Þ

1 2 3 4 5 6
k

0

0.02

0.04

0.06

0.08

0.1

0.12

u(k
) (0

,t)

Analytical (t=1)
Numerical (t=1)
Analytical (t=3)
Numerical (t=3)

Analytical (t=1)
Numerical (t=1)
Analytical (t=3)
Numerical (t=3)

(a)

1 2 3 4 5 6
k

0

0.02

0.04

0.06

0.08

0.1

0.12

u(k
) (0

,0
,t)

(b)

Fig. 7. Partial contributions to the global solution of the KPP equation (a) in 1D, and (b) in 2D, as a function of the number of branches. This has been done
for the initial condition f ðxÞ ¼ expð�x2=4rÞ=

ffiffiffiffiffiffiffiffiffiffi
4pr
p

, for two different values of the final time, t ¼ 1 and t ¼ 3. The other parameters are N ¼ 106; c ¼ 1, and
r ¼ 1.

5584 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
appears, kmax denoting the maximum number of branches taken into account in expansion (22). Such an error can be
bounded from above. This follows from Eq. (23) and we obtain
Fig. 8.
branch
e 6
X1

k¼kmaxþ1

PðkÞgk ð39Þ
and being g < 1, then it holds that
e 6 gkmaxþ1
X1

k¼kmaxþ1

PðkÞ: ð40Þ
When the nonlinearity is purely quadratic, replacing PðkÞwith the corresponding analytic form of the probability in Eq. (17),
the series above can be worked out, yielding
e 6 gkmaxþ1ð1� e�ctÞkmax : ð41Þ
In Fig. 8, the numerical error obtained solving an initial value problem for the KPP equation in 1D is shown as a function of
kmax. We chose the initial condition f ðxÞ ¼ expð�x2=4rÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4prÞ

p
with r ¼ 0:1. Since an analytical solution for the corre-

sponding problem is not known, we compared it with the numerical solution obtained by a finite difference implicit method
with a very fine space-time grid.

Let consider a time step Dt sufficiently small to guarantee that the error due to the discretization of Eq. (3) is smaller than
the statistical error, estat . It turns out that estat is the dominant error in the numerical probabilistic evaluation of uðx; tÞ by
1 2 3 4 5 6 7 8 9 10

Kmax

0.001

0.01

0.02

0.03

0.04

Er
ro

r

Numerical Error
Statistical Error (1.0e-03)

Truncation error, e, obtained solving an initial value problem for the KPP equation in 1D at x ¼ 0 and t ¼ 2, as a function of the maximum number of
es, kmax , taken into account. The initial condition was f ðxÞ ¼ expð�x2=4rÞ=

ffiffiffiffiffiffiffiffiffiffi
4pr
p

with r ¼ 0:1. The other parameters are as in Fig. 7.

0 5 10 15

t

0

100

200

300

400

T Pr
ob

T Pr
ob

kmax=24
kmax=30

kmax=24
kmax=30

(a)

0 5 10 15

t

0

200

400

600
(b)

Fig. 9. Computational time as a function of the final time spent to solve numerically the KPP equation in: (a) 1D, and (b) 2D at a single point, x = 0. Here
pruned random trees, with kmax ¼ 24 and kmax ¼ 30, have been generated. The parameters used are as in Fig. 7.

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5585
means of (22). This suggests that for any given sample size, should be possible to choose a (finite) value of kmax such that the
truncation error e lie well below estat , and hence undetectable, in practice, in the numerical results. In other words, this means
that the contribution to the solution of random trees with a number of branches k larger than kmax is negligible.

For the case of the KPP equation in n dimensions, with the initial condition f ðxÞ ¼ expð�x2=4rÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4prÞ

p
, the right-hand

side of Eq. (41) can be worked out analytically, and kmax can be obtained as a function of estat . We have
kmax ¼
log estat þ 1

2 log ð4prÞ
log ð1� e�ctÞ � 1

2 log ð4prÞ
: ð42Þ
For the parameters chosen to provide the results plotted in Fig. 8, kmax can be computed, and it turns out to be approximately
equal to 6. Note that the truncation error e plotted in Fig. 8 becomes smaller than the statistical error (which is of order of
10�3 for the parameter values chosen) as kmax becomes larger than 6.

Clearly, pruning the trees is important since it allows to reduce appreciably the CPU time required to compute the solu-
tion probabilistically. In fact, as is shown in Fig. 9, in doing so the computational time becomes nearly constant after long
times. The computational time required to solve probabilistically the KPP equation in 1D and 2D at a single point was mea-
sured as a function of the final time, pruning the trees with kmax ¼ 24 and kmax ¼ 30, respectively.

The explanation of such a behavior is that random trees whose total number of branches exceeds kmax in the simulations
can be suddenly cut without affecting the results. In practice, they contribute to the computational time as they were trees
having only kmax branches. Therefore, the computational time spent for long final times can be estimated as
tb 	 kmaxtc

X1
k¼kmaxþ1

PðkÞ ¼ kmaxtcð1� e�ctÞkmax : ð43Þ
Note that when t ! þ1; tb ! kmaxtc . This agrees with what can be observed in Fig. 9. In fact, the ratio between the asymp-
totic values of the computational times for the two values of kmax chosen above coincides approximately with the theoret-
ically expected value, 30/24 (=1.25). Note that the results do not depend on the dimension, as was expected.

5. Numerical examples

In this section, we present some numerical examples for the two-dimensional case, on the square X ¼ ½�L; L� � ½�L; L�, to
illustrate the probabilistically induced domain decomposition (PDD) algorithm described in the previous sections. All sim-
ulations were carried out on the MareNostrum Supercomputer of the Barcelona Supercomputing Center, using up to 1,024
processors.

5.1. Computer science-related issues

In order to assess the performance of our method, a comparison was made solving the same problem by some other (clas-
sical) numerical schemes. The space-time domain as well as the subdomains in our decomposition being simple, we used the
Crank–Nicolson (implicit) finite difference method. On the various uncoupled subdomains obtained by the PDD algorithm
we used LAPACK, while the full domain solution was computed by ScaLAPACK, which is considered extremely efficient
for the parallel solution of banded linear systems. In fact, the resulting matrix A associated to the linear algebraic problem
to be solved is banded, with a bandwidth BW, say.

5586 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
In the following, we keep fixed the space discretization of the two-dimensional finite difference computational mesh,
choosing an equal number of computational nodes in both dimensions, that is Nx ¼ Ny ¼ N. Note that the bandwidth of
the matrix A is N, being A 2 RN2�N2

. The memory consumption and the computational cost of both methods, the PDD and
ScaLAPACK, can be estimated as a function of the number of processors, p. ScaLAPACK requires storing the full matrix in a
block-column distribution format among the p processors [12]. When the matrix is not diagonally dominant, the LU factor-
ization may be numerically unstable, and a partial pivoting with elimination might be necessary. In practice, this may re-
quire an additional storage to prevent a fill-in. Furthermore, reordering is often used to increase parallelism in the
factorization. In [7,8], the local memory needed per processor, Mp, has been estimated, and shown to decrease proportionally
to p, more precisely as
MpScaLAPACK
¼ N2

p
ð4BW þ 1Þ: ð44Þ
The bandwidth is not affected by the number of processors involved, and for such a computational mesh it turns out to be
always BW ¼ N. Then, it follows
MpScaLAPACK
¼ 4

N3

p
þ N2

p
: ð45Þ
The computational cost of ScaLAPACK for solving the full banded linear system, CScaLAPACK , was also estimated theoretically
in [7,8]. For our purpose, the upper-half bandwidth, ku, and lower-half bandwidth, kl, are equal, kl ¼ ku ¼ BW . It follows
that
CScaLAPACK 	 ð4ð2NÞ2 þ 6ð2NÞÞN
p
þ 23

3
ð2NÞ3 þ 12ð2NÞ2

	

blog2 pc þ tcomm þ 4

N3

p
þ 2

N2

p

¼ 16N3 þ 12N2

p
þ 184

3
N3 þ 48N2

	

blog2 pc þ tcomm þ 4

N3

p
þ 2

N2

p
;

see [7,8]. Here tcomm represents the interprocessor communication cost, tcomm 	 OðN2blog2 pcÞ, which is due to the cyclic
reduction that permits pivoting [21,9]. The last two terms are due to the computational time spent evaluating the coeffi-
cients of the matrix and the right-hand side, respectively. Note that the appearance of an intercommunication overhead
may degrade the performance of the algorithm when the number of processors involved increases.

As for the PDD method, once the solution has been computed on the interfaces, the full domain can be split into p sub-
domains, and assigned to different processors. Therefore, each processor can be devoted only to the solution of its local linear
system, whose banded associated matrix is smaller. In fact, the memory consumption per processor, including an extra fill-in
space, will be considerably reduced. With LAPACK as local solver, the resources have been estimated theoretically [7,8], and
amount to
MpPDD
¼ N2

p
3BW: ð46Þ
Since the subdomains are now fully independent of each other, the bandwidth corresponds to the local matrix on each sub-
domain (assumed to be all identical, for simplicity), hence N=p. Therefore,
MpPDD
¼ 3

N3

p2 : ð47Þ
Note that, with a large number of processors, this is significantly smaller that obtained for ScaLAPACK, and the relative
advantage increases linearly with p, being
MpPDD

MpScaLAPACK

¼ 3N
4N þ 1

1
p
:

The local solver for the PDD method, being based on LAPACK for solving banded linear system, consists of the LU factoriza-
tion followed by a forward/backward substitution. The computational cost is known to be of order of N2BW2 for the LU fac-
torization, and N2BW for the forward/backward substitution, N2 being the size of the square matrix and BW ¼ N=p. Hence,
with the local solver LAPACK, the computational cost of the local solver of the PDD can be readily estimated,
CPDD 	 aoptð4BW þ 1ÞBW
N2

p
þ 3

N3

p2 þ
N2

p
¼ N2

p
4aopt

N2

p2 þ ðaopt þ 3ÞN
p
þ 1

 !
; ð48Þ
see [7,8]. The last two terms are again related to the computational time spent to compute the matrix coefficients and the
right-hand side, respectively. Here the parameter aopt < 1 was introduced to account for the computational advantages
gained when handling an optimized LAPACK library, after tuning conveniently the BLAS library for the specific hardware
platform used.

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5587
In view of such results, it is worth pointing out some important differences in terms of memory consumption for both
methods. In fact, while in ScaLAPACK the memory consumption decreases as p�1, for the PDD it is proportional to p�2. In
practice, this allows the PDD algorithm to exploit at best the available computational resources, being capable to handle
problems whose size can be much higher than ScaLAPACK can afford.

As for the computational cost, the PDD algorithm performs much better than ScaLAPACK. In fact, when N
 p, the com-
putational cost of the PDD method decreases as p�3 for large p, while that of ScaLAPACK decreases only as p�1.

Due to the strong limitations of ScaLAPACK in terms of memory consumption, it is difficult to chose a convenient exper-
imental range of values for an arbitrary number of processors, suitable to compare the scalability properties of both methods,
when both are performing at best of theirs capabilities. Indeed, the optimal computational workloads for ScaLAPACK are in
general rather modest compared to the PDD high performance, being in all cases severely underused.

To this purpose, we tried first to adjust carefully the parameter values to deal with the limitations imposed by ScaLAPACK.
However, it happens that for this case the total computational workload is too low for the local solver of the PDD. The overall
computational time is basically due to the probabilistic part of the algorithm (the Monte Carlo computations), which turns
out to be independent of the number of processors, p. The reason should be found in the way the PDD algorithm is imple-
mented in practice on a parallel computer. We assigned the task of computing each set of interfacial values to a different
processor. When the number of processors is sufficiently large, assigning these independent tasks to different processors
can be done in a one-to-one mapping, leaving only one processor idle in such a mapping (in fact, the number of interfaces
turns out to be equal to the number of processors minus one). Moreover, the size of the local linear algebraic problem cor-
responding to each subdomain is reduced considerably, making the computational time spent by the local solver negligible
compared to the time spent by the Monte Carlo and the interpolation parts of the algorithm. Therefore, the overall compu-
tational time of the algorithm tends to remain constant when the number of processors is sufficiently large. That time is
however by far much smaller than the best time ever achieved by ScaLAPACK.

5.2. Numerical test problems

In this subsection we consider two numerical test problems.

Example A. In Table 1, we compared the results obtained by the PDD method and by ScaLAPACK, solving a Dirichlet
boundary value problem for the KPP equation in 2D. The problem is given by
Table 1
Compar

Numbe

64
128
256
@u
@t
¼ @

2u
@x2 þ

@2u
@y2 � uþ u2 in X ¼ ½�L; L� � ½�L; L�; t > 0; ð49Þ
with boundary- and initial-conditions
uðx; y; tÞj@X ¼ gðx; y; tÞ@X
��
@X
; uðx; y; 0Þ ¼ 1þ e

x�y
2
ffiffi
3
p

� ��2
; ð50Þ
gðx; y; tÞ being the known analytical solution to this problem,
gðx; y; tÞ ¼ 1þ e
x�yffiffi

2
p � 5ffiffi

6
p tffiffi

6
p

 !�2

: ð51Þ
The parameters chosen for the local solver were: Dx ¼ Dy ¼ 2:5� 10�4; L ¼ 0:5 for the space domain, and Dt ¼ 10�3 for the
time domain. The solution uðx; y; tÞ was computed at the final time t ¼ 0:5. The time step used solving Eq. (3) was Dt ¼ 10�2.

The third column (ScaLAPACK) in Table 1 shows the overall computational time (in seconds) spent by ScaLAPACK using
p ¼ 64;128, and 256 processors. The corresponding total time spent by the PDD algorithm is shown in the second column,
being also displayed here the computational time required by the Monte Carlo part of the algorithm ðTMCÞ and the
interpolation part ðTINTERPÞ. Recall that the overall computational time is simply the sum of the time spent by the three parts
of the algorithm, that is the Monte Carlo part, the interpolation part, and the local solver. The two methods were compared
correspondingly to the same maximum error, 10�3. With both algorithms the CPU time decreases as p increases, and this
trend is more dramatic in the PDD algorithm. Note that for a large number of processors, the CPU time for the PDD algorithm
tends to stabilize as was explained before. Clearly, the PDD outperforms ScaLAPACK, the differences being absolutely
striking.
ing the computational times spent by PDD and Scalapack in Example A.

r of processors PDD ScaLAPACK

TMC TINTERP TTOTAL TTOTAL

2’ 17” <1” 3’ 37” –
2’ 18” <1” 2’ 23” 7510’ 20”
2’ 18” <1” 2’ 18” 5223’ 41”

x

y

(a)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1

2

3

4

5

6

7

8
x 10

−5

x

y

(b)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−3

Fig. 10. Pointwise numerical error for the solution to the problem of Example A, at t ¼ 0:5 in: (a) the PDD algorithm, and (b) ScaLAPACK.

5588 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
In Fig. 10, contour plots for the pointwise numerical error made solving the problem of Example A, by both, PDD (a), and
ScaLAPACK (b) are shown. Since the LU decomposition implemented in LAPACK is not suited to be parallelized, a reordering
with additional permutations on the input matrix is done in ScaLAPACK, aiming to extract concurrency from the algorithm.
Therefore, in practice, ScaLAPACK requires more internal operations to solve the full problem than LAPACK does. As a
consequence, the expected final numerical error simply due to the propagation of roundoff errors in the algorithm may be
higher than that obtained using LAPACK. This may explain what can be observed in Fig. 10.

The previous results were obtained aiming to compare the performance of the PDD algorithm with that of another (freely
available) method. This was done adjusting the size of the domain making it suitable for the classical method. This approach
prevented, however, to exploit at best the PDD algorithm. In the following, we show some results obtained only using the
PDD algorithm, because ScaLAPACK was unable to conduct the same task with the available computational resources.

Table 2 refers to the problem of Example A and shows the computational time spent by the PDD algorithm when runned
with 128,256, and 512 processors. This has been done keeping fixed the space domain, choosing now L ¼ 1.
Table 2
Computational time spent by the PDD algorithm in Example A.

Number of processors PDD

TMC TINTERP TTOTAL

128 4’ 53” <1” 214’ 17”
256 5’ 00” <1” 54’ 11”
512 4’ 55” <1” 15’ 58”

Table 3
Computational time spent by the PDD algorithm in Example B.

Number of processors PDD

TMC TINTERP TTOTAL

128 1’ 05” <1” 209’ 44”
256 1’ 05” <1” 53’ 10”
512 1’ 06” <1” 12’ 13”
1024 1’ 08” <1” 3’ 59”

Table 4
Computational time spent by the PDD algorithm in Example B for a rectangular domain.

N. CPUs PDD

TBBM TINTERP TTOTAL

128 1’ 07” <1” 903’ 55”
256 1’ 09” <1” 177’ 46”
512 1’ 11” <1” 43’ 21”
1024 1’ 12” <1” 12’ 28”

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5589
It is worth observing that the computational time spent by the interpolation part is negligeable compared to the time
spent by the probabilistic and the local solver part.

Example B. Consider now the more general problem
@u
@t
¼ ð1þ x2Þ @

2u
@x2 þ ð1þ y3Þ @

2u
@y2 þ ðsin xey þ 2Þ @u

@x
þ ðsin x cos yþ 2Þ @u

@y
� uþ 1

2
u2 þ 1

2
u3

in X ¼ ½�L; L� � ½�L; L�; t > 0; ð52Þ
with L ¼ 1 and boundary- and initial-conditions
uðx; y; tÞj@X ¼ 0; uðx; y;0Þ ¼ cos2 px
2L

� �
cos2 py

2L

� �
: ð53Þ
No analytical solution is known for this problem, hence the numerical error made was controlled comparing the solution
obtained with the PDD method with that given by a finite difference method with a very fine space-time mesh.

In Table 3, results similar to those of the Example A are shown, but now we used up to 1,024 processors. For this problem,
the computational time spent by the probabilistic part is less than that spent in the previous case. The larger values of the
diffusion coefficient allows now the random trees to reach the boundary faster than before. Therefore, the most part of the
computational time is spent by the local solver, where the parallelization features of the algorithm can be exploited at best,
the problem being fully uncoupled, at this point. Even though the problem of Example B is more complex than that of
Example A, the PDD method behaves similarly, showing the excellent scalability properties of the algorithm for arbitrarily
many processors.

Note that the algorithm scales according to a factor approximately equal to 4, when doubling the number of processors.
However, a factor from 8 should be expected from (48), since N=p
 1. An explanation of this fact could be found in the size of
the problem (hence in the computational load), which is not sufficiently large, and because the optimized LAPACK is speeding
up considerably the LU factorization. Therefore, the dominant asymptotic behavior is governed, rather, by the second term in
(48). To confirm that this is the case, new simulations for a larger computational load would be needed, such that now
N=p
 1=aopt . The required computational resources, in terms of memory, however, largely exceed the available memory
(the limits of the computational resources have already being reached). We can circumvent this problem increasing the
bandwidth of the associated matrix, keeping almost constant the computational load. This can be done merely considering a
rectangular domain, X ¼ ½�Lx; Lx� � ½�Ly; Ly�, with Lx–Ly. In Table 4, the results corresponding to such a rectangular domain
are shown. We used the parameters: Lx ¼ 204:8, Ly ¼ 0:125;Dx ¼ Dy ¼ 5� 10�3, and Dt ¼ 10�3. Note that the scaling factor
has changed significantly, reaching even the value 5, when passing from 128 to 256 processors. Increasing further the
number of processors, implies reducing the scaling factor. This is in good agreement with the theoretical estimates in (48),
since, asymptotically, the dominant term changes accordingly to the number of processors involved as well.
6. Summary

A new hybrid parallel numerical algorithm for solving nonlinear parabolic partial differential equations in any space
dimension has been investigated, capable of exploiting the best features of two strategies: domain decomposition method,

5590 J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591
and the Monte Carlo method. A domain decomposition approach has been used to split the given space-time domain into as
many subdomains as available processors. The solutions on the interfaces separating the subdomains, being unknown, are
computed by interpolating on the nodal points where the solution is obtained probabilistically. This probabilistic computa-
tion consists of evaluating averages on suitably-generated random trees, which play a role similar to that of random paths in
linear problems. In contrast to the classical deterministic method for solving partial differential equations, the probabilistic
approach allows to compute the solution at single points internal to the domain, without the need for first generating a com-
putational grid and solving the full problem. This fact is of paramount importance because, once the solution on the inter-
faces has been computed, the tasks of evaluating the solutions inside each subdomains turn out to be totally independent of
one another, and thus can be assigned to an arbitrary number of processors without any intercommunication overhead. In
principle, a drawback of the algorithm is the computational time spent in computing the solution at the nodal points by aver-
aging over suitable random trees. Over large time intervals, the computational time spent for the probabilistic part of the
algorithm becomes prohibitive, due to the appearance of random trees with large numbers of branches. However, in this
paper it has been proved theoretically, and confirmed by numerical simulations, that the trees in question can be”pruned”
in a suitable way, without appreciably losing accuracy. This strategy speeds up the probabilistic part considerably. Some
numerical examples have been provided here, which show the excellent scalability properties of the PDD algorithm in
large-scale simulations, using up to 1,024 processors on a high performance supercomputer. The performance of the PDD
algorithm has been compared with that of other efficient, freely available parallel algorithms, showing a striking difference.

Acknowledgments

This work was supported, in part, by the Portuguese FCT, the Italy–Spain ‘‘Integrated Actions”, and the Italian GNFM-IN-
dAM. The authors thankfully acknowledge computer resources, technical expertise, and assistance provided by the Barcelona
Supercomputing Center - Centro Nacional the Supercomputación.

References

[1] J.A. Acebrón, M.P. Busico, P. Lanucara, R. Spigler, Domain decomposition solution of elliptic boundary-value problems, SIAM J. Sci. Comput. 27 (2)
(2005) 440–457.

[2] J.A. Acebrón, M.P. Busico, P. Lanucara, R. Spigler, Probabilistically induced domain decomposition methods for elliptic boundary-value problems, J.
Comput. Phys. 210 (2) (2005) 421–438.

[3] J.A. Acebrón, R. Spigler, Supercomputing applications to the numerical modeling of industrial and applied mathematics problems, J. Supercomput 40
(2007) 67–80.

[4] J.A. Acebrón, R. Spigler, A fully scalable parallel algorithm for solving elliptic partial differential equations, in: Lect. Notes in Comput. Sci., vol. 4641,
2007, pp. 727–736.

[5] J.A. Acebrón, Á. Rodrı́guez-Rozas, R. Spigler, Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees,
submitted for publication.

[6] H.M. Antia, Numerical Methods for Scientists and Engineers, Tata McGraw-Hill, New Delhi, 1995.
[7] P. Arbenz, A. Cleary, J. Dongarra, M. Hegland, A comparison of parallel solvers for diagonally dominant and general narrow-banded linear systems,

Parallel Distributed Comput. Pract. 2 (4) (1999) 385–400.
[8] P. Arbenz, A. Cleary, J. Dongarra, M. Hegland, A Comparison of Parallel Solvers for Diagonally Dominant and General Narrow-banded Linear Systems II,

EuroPar’99 Parallel Processing, Springer, Berlin, 1999. pp. 1078–1087.
[9] P. Arbenz, M. Hegland, On the stable parallel solution of general narrow banded linear systems, in: P. Arbenz, M. Paprzycki, A. Sameh, V. Sarin (Eds.),

High Performance Algorithms for Structured Matrix Problems, Nova Science Publishers, Commack, NY, 1998, pp. 47–73.
[10] L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York, 1974.
[11] P. Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation, Ann. Prob. 23 (1995) 1644–1670.
[12] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C. Whaley,

ScaLAPACK User’s Guide, Society for Industrial and Applied Mathematics, SIAM, 1997.
[13] D. Blömker, M. Romito, R. Tribe, A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees, Ann. Inst. H.

Poincaré Probab. Stat. 43 (2007) 175–192.
[14] F.M. Buchmann, W.P. Petersen, An Exit Probability Approach to Solve High Dimensional Dirichlet Problems, SIAM J. Sci. Stat. Comput. 28 (2006) 1153–

1166.
[15] Tony F. Chan, Tarek P. Mathew, Domain Decomposition Algorithms, Acta Numerica, Cambridge University Press, Cambridge, 1994. pp. 61–143.
[16] C. DeBoor, A practical guide to splines, Springer, 1994.
[17] M. Freidlin, Functional Integration and Partial Differential Equations, Annals of Mathematics Studies, vol. 109, Princeton Univ. Press, Princeton, 1985.
[18] E. Floriani, R. Lima, R. Vilela Mendes, Poisson–Vlasov: stochastic representation and numerical codes, Eur. Phys. J. D 46 (2008) 295–302.
[19] G.A. Geist, Progress towards Petascale Virtual machines, in: J. Dongarra, D. Laforenza, S. Orlando (Eds.), Euro PVM/MPI 2003, Lecture Notes in

Computer Science, Springer, Berlin, 2003, pp. 10–14.
[20] E. Gobet, Weak approximation of killed diffusion using Euler schemes, Stochast. Process. Appl. 87 (2000) 167–197.
[21] M. Hegland, Divide and conquer for the solution of banded linear systems of equations, in: Proceedings of the 4th Euromicro Workshop on Parallel and

Distributed Processing (PDP’96), January 24–26, 1996, p. 394.
[22] M.H. Kalos, P.A. Withlock, Monte Carlo Methods, Basics, vol. I, Wiley, New York, 1986.
[23] I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, second ed., Springer, Berlin, 1991.
[24] P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
[25] Y. LeJan, A.-S. Sznitman, Stochastic cascades and 3-dimensional Navier–Stokes equations, Probab. Theory Related Fields 109 (1997) 343–366.
[26] R. Mannella, Absorbing boundaries and optimal stopping in a stochastic differential equation, Phys. Lett. A 254 (1999) 257–262.
[27] H.P. McKean, Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov, Commun. Pure Appl. Math. 28 (1975) 323–331.
[28] M. Ossiander, A probabilistic representation of solutions of the incompressible Navier–Stokes equations in R3, Probab. Theory Related Fields 133

(2005) 267–298.
[29] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equations, Oxford Science Publications, Clarendon Press, Oxford, 1999.
[30] J.M. Ramirez, Multiplicative cascades applied to PDEs (two numerical examples), J. Comput. Phys. 214 (2006) 122–136.
[31] J. Seixas, R. Vilela Mendes, Large-deviation analysis of multiplicity fluctuations, Nuclear Phys. B 383 (1992) 622–642.

J.A. Acebrón et al. / Journal of Computational Physics 228 (2009) 5574–5591 5591
[32] W. Strittmatter, Numerical simulation of the mean first passage time, University Freiburg Report No. THEP 87/12, unpublished.
[33] E.V. Shikin, A.I. Plis, Handbook on Splines for the User, CRC-Press, 1995.
[34] R. Vilela Mendes, F. Cipriano, A stochastic representation for the Poisson–Vlasov equation, Commun. Nonlinear Sci. Numer. Simul. 13 (2008) 221–226.
[35] R. Vilela Mendes, J. Seixas, Large-deviation analysis of multiplicity fluctuations, Nuclear Phys. B 383 (1992) 622–642.
[36] E. Waymire, Probability and incompressible Navier–Stokes equations: a overview of some recent developments, Probab. Surv. 2 (2005) 1–32.

	Domain decomposition solution of nonlinear two-dimensional parabolic problems by random trees
	Introduction
	Mathematical preliminaries
	The numerical method
	Probabilistic part
	Computational complexity for the nonlinear problem

	Interpolation in space-time
	Local solver

	Reducing the computational complexity of the probabilistic part by pruning the trees
	Numerical examples
	Computer science-related issues
	Numerical test problems

	Summary
	Acknowledgments
	References

